天元东北中心有限元主题系列报告|A high-order fictitious-domain method for linear convection-diffusion equation on time-varying domain
报 告 人: 郑伟英 研究员
所在单位: 中国科学院数学与系统科学研究院
报告地点:
报告时间: 2020-08-13 10:00:00
报告简介:

Solving PDEs on time-varying domains has many applications in computational fluid dynamics. Generally, one has to discretize the PDE and track the variation (movement + deformation) of the domain simultaneously. We propose a high-order numerical method for solving linear convection-diffusion equations in 2D based on fictitious domain and Eulerian meshes. For smooth solutions, high-order error estimates are proved by taking account of surface-tracking errors, time-discretization errors, and spatial errors from unfitted finite element discretization. Numerical experiments show up to fourth-order convergence of the method for relatively large deformation of the domain.


上一篇 下一篇
主讲人简介:
中国科学院数学与系统科学研究院研究员,1996年本科毕业于郑州大学,2002年博士毕业于北京大学,2017年获国家杰出青年科学基金资助,2019年任中科院数学与系统科学研究院“冯康首席研究员”。主要从事有限元方法的理论与应用研究,应用领域包括电磁和流体计算等。