天元东北中心有限元主题系列报告|Discontinuous Galerkin method for a distributed optimal control problems of time fractional diffusion equation
报 告 人: 谢小平 教授
所在单位: 四川大学
报告地点: 腾讯会议
报告时间: 2020-08-05 10:00:00
报告简介:

腾讯会议 ID:206 240 120

会议链接:https://meeting.tencent.com/s/jBoSx9wOk34B


This talk is devoted to the numerical analysis of a control constrained distributed optimal control problem subject to a time fractional diffusion equation with non-smooth initial data. The solutions of the state and co-state are decomposed into singular and regular parts, and some growth estimates are obtained for the singular parts. Following the variational discretization concept, a full discretization is applied to the state and co-state equations by using conforming linear finite element method in space and piecewise constant discontinuous Galerkin method in time. Error estimates are derived by employing the growth estimates. In particular, graded temporal grids are adopted to obtain the first-order temporal accuracy. Finally, numerical experiments are provided to verify the theoretical results.

This is a joint work with Binjie Li (SCU) and Tao Wang (SCNU).


上一篇 下一篇
主讲人简介:
谢小平,四川大学数学学院教授(博导),四川省学术和技术带头人,教育部新世纪优秀人才,德国洪堡学者。现兼任中国工业与应用数学学会油水资源数值方法专业委员会副主任委员,中国工业与应用数学学会高性能计算与数学软件专业委员会委员,中国仿真学会集成微系统建模与仿真专业委员会委员。期刊《Numerical Analysis and Applicable Mathematics》、《计算数学》和《高等学校计算数学学报》编委。主要研究领域为偏微分方程数值解、有限元法的理论及应用等。