Colloquium系列报告 | Numerical algorithms of a Q-tensor gradient flow with quasi-entropy for the smectic liquid crystals in confinements
报 告 人: 姚小妹 讲师
所在单位: 华北电力大学
报告地点: 腾讯会议321-710-831
报告时间: 2025-04-29 09:00:00
报告简介:

We propose and analyze numerical schemes for the Q-tensor gradient flow coupled with quasi-entropy. The quasi-entropy is a strictly convex, rotationally invariant elementary function that impose physical constraints. The Q-tensor model, containing a fourth-order term of concentration in the energy functional, could be utilized to describe smectic liquid crystals in confinements. For the gradient flow, in addition to the traditional Dirichlet boundary conditions, we propose a time evolution equation for the spatial outer normal derivative of concentration on the boundary. The numerical scheme is validated to satisfy physical constraints and energy dissipation. Furthermore, we derive the error estimates of first-order in time and two-order in space, and carry out some numerical examples to verify the results.

上一篇 下一篇
主讲人简介:
姚小妹,华北电力大学数理学院讲师。2010年获得北京师范大学数学科学学院学士学位,2013年获得北京师范大学数学科学学院计算数学硕士学位;2013.09-2015.06在福建江夏学院任教两年;2018年获得北京师范大学数学科学学院计算数学博士学位。2018-2020年在北京航空航天大学化学学院做博士后;2020-2022年在北京大学北京国际数学研究中心做二站博士后。2022年7月入职华北电力大学工作。主要研究方向:偏微分方程数值解,液晶的建模与数值计算,解景观算法和应用。