Colloquium系列报告|AutoMS: Automatic Model Selection for Novelty Detection with Error Rate Control
报 告 人: 邹长亮 教授
所在单位: 南开大学
报告地点: 腾讯会议 ID: 969-241-575
报告时间: 2022-11-30 15:30:00
报告简介:

Given an unsupervised novelty detection task on a new dataset, how can we automatically select a “best” detection model while simultaneously controlling the error rate of the best model? For novelty detection analysis, numerous detectors have been proposed to detect outliers on a new unseen dataset based on a score function trained on available clean data. However, due to the absence of labeled data for model evaluation and comparison, there is a lack of systematic approaches that are able to select the “best” model/detector (i.e., the algorithm as well as its hyperparameters) and achieve certain error rate control simultaneously. In this talk, I will introduce a unified data-driven procedure to address this issue. The key idea is to maximize the number of detected outliers while controlling the false discovery rate (FDR) with the help of Jackknife prediction. We establish non-asymptotic bounds for the false discovery proportions and show that the proposed procedure yields valid FDR control under some mild conditions. Numericalexperiments on both synthetic and real data validate the theoretical results and demonstrate the effectiveness of our proposed AutoMS method.

上一篇 下一篇
主讲人简介:
邹长亮 南开大学统计与数据科学学院教授。08年于南开大学获博士学位,随后留校任教。主要从事统计学及其与数据科学领域的交叉研究和实际应用。研究兴趣包括:高维数据统计推断、大规模数据流分析、变点和异常点检测等,在Ann.Stat.、Biometrika、 J.Am.Stat.Asso.、Math. Program.、Technometrics、IISE Tran.等统计学和工业工程领域期刊上发表论文几十篇,主持国家自然科学基金委杰青、优青、重点项目以及重大项目课题等。