天元名家讲座|Symplectic vortex,its generalization,and Quantum Kirwan morphisms
报 告 人: 陈柏辉 教授
所在单位: 四川大学
报告地点: 数学楼一楼第二报告厅
报告时间: 2021-06-29 10:00:00
报告简介:

Let $(M, \omega,G,\mu)$ be a symplectic manifold with a Hamiltonian action. Let $X$ be its symplectic reduction. The symplectic vortices on $M$ were introduced by Salamon, Mundet i Riera and etc 20 years ago. It is used to construct the so-called Hamiltonian Gromov-Witten invariants. Essentially, this is a new type of the Gromov-Witten theory for the reduction $X$ using the equivariant topological data of $M$. In this talk, I will review the topic following this line with $L^2$-moduli spaces of symplectic vortices. Furthermore, we generalize the vortex equation and introduce a new equivariant moduli space to give an equivariant Gromov-Witten theory for $M$ when $G$ is abelian. Combine these constructions, we may realize a quantum version of Kirwan map. The talk is mainly based on the joint work with Bai-Ling Wang and Rui Wang.

上一篇 下一篇
主讲人简介:
陈柏辉教授,四川大学数学学院科研副院长,博士生导师,教育部长江学者。研究方向为基础数学的几何与拓扑。工作涉及辛几何,低维拓扑与规范场理论,几何分析等。在《Adv.in Math.》、《Topology》、《Math. Ann.》、《Math.Z.》等国际著名杂志上发表多篇学术论文。