天元名家讲座|Schur Q-polynomials and intersection numbers on moduli spaces of curves
报 告 人: 刘小博 教授
所在单位: 北京大学
报告地点: 数学楼一楼第二报告厅
报告时间: 2021-06-18 10:00:00
报告简介:

Generating functions of intersection numbers of certain tautological classes on moduli spaces of stable curves provide geometric solutions to integrable systems. Notable examples are the Kontsevich-Witten tau function and Brezin-Gross-Witten tau function. Both of them are tau-functions of the KdV hierarchy. Recently Mironov-Morozov gave a formula expressing Kontsevich-Witten tau function as a simple expansion of Schur's Q-polynomial with simple coefficients. This formula was called Mironov-Morozov conjecture by Alexandrov. A similar formula was also conjectured by Alexandrov for Brezin-Gross-Witten tau function. In this talk I will describe proofs of these formulas using Virasoro constraints. This is a joint work with Chenglang Yang.


上一篇 下一篇
主讲人简介:
北京大学讲席教授,北京国际数学研究中心副主任,北京大学数学研究所副所长。曾任美国University of Notre Dame 教授,获得美国Sloan基金会Research Fellowship,2006年获邀在马德里召开的国际数学家大会作45分钟报告。主要研究领域包括Gromov-Witten不变量理论和等参子流形理论,在Annals of Mathematics, Duke Math. J. 等国际著名期刊上发表多篇高质量论文。