天元系列活动 | Evolving finite element methods with an artificial tangential velocity for surface evolution
报 告 人: 胡嘉顺 博士后
所在单位: 香港理工大学
报告地点: 腾讯会议 381-575-906
报告时间: 2024-12-28 19:00:00
报告简介:

An artificial tangential velocity is introduced into evolving finite element methods for mean curvature flow, Willmore flow, and flow driven by a prescribed smooth velocity field, aiming to enhance mesh quality during computations. The construction of this artificial tangential velocity is based on a limiting case of the method proposed by Barrett, Garcke, and Nürnberg (J. Comput. Phys. 222(1), 441-467, 2007). We establish the stability of the artificial tangential velocity and prove optimal-order convergence for the evolving finite element methods applied to mean curvature flow, Willmore flow, and flow under a given velocity field. Extensive numerical experiments are provided, demonstrating the convergence of the methods, the effectiveness of the artificial tangential velocity in improving mesh quality, and significant improvements in the accuracy of solving PDEs on evolving domains.

上一篇 下一篇
主讲人简介:
胡嘉顺,香港理工大学应用数学系博士后。2016年获清华大学理学学士学位,2021年获清华大学理学博士学位。主要从事无界域上偏微分方程、曲率流和流固耦合问题的求解。在SIAM J. Numer. Anal, SIAM J. Sci. Comput. 及Numer. Math等计算数学高水平期刊发表学术论文多篇。