天元东北中心有限元主题系列报告|Finite element diagram chasing
报 告 人: 胡凯博 博士
所在单位: University of Minnesota
报告地点: 腾讯会议
报告时间: 2020-08-26 10:00:00
报告简介:

腾讯会议ID:418 227 590

会议链接:https://meeting.tencent.com/s/4M7QFoY5DCgN


There is a close relation between Maxwell’s equations and the de Rham complex. The perspective of continuous and discrete differential forms has inspired key progress in computational electromagnetism. This complex point of view also plays an important role in, e.g., continuum theory of defects, intrinsic elasticity and relativity.

In this talk, we briefly review the de Rham complexes and their smoother versions, known as the Stokes complexes with applications in fluid mechanics. Then we generate new complexes from them and study their algebraic and analytic properties. As an example, we construct Sobolev and finite element elasticity complexes by diagram chasing. Special cases of this cohomological approach generalize results in classical elasticity, e.g., the Korn inequality and the Cesàro-Volterra path integral.


上一篇 下一篇
主讲人简介:
胡凯博, 2017年博士毕业于北京大学. 后在 University of Oslo 和 University of Minnesota 从事博士后研究. 目前研究兴趣包括 finite element exterior calculus 及其在连续介质力学和相对论中的应用, 以及有限元和离散几何/物理的联系.