Due to the remarkable progress of computational sciences including first principles calculations, we can predict the physical properties of new materials and device characteristics by theoretical calculations. For example, we can well reproduce surface reconstructions at the atomistic level, and we can predict the importance of oxygen vacancies in high-k HfO2 oxide dielectrics based on the first principles calculations. Actually, first principles calculations are treated as crucial tool for designing future micro-electronic engineering in the present days.
In this presentation, we will show the new scientific findings which gives great insight to modern micro electronics engineering by showing some recent our activities given by first principles calculations. We discuss the importance of computational sciences for developing future micro electronics devices by showing the example of successful results of first principles calculations such as design of high-k LSI, operation mechanisms of modern memory devices including charge trap memories (MONOS) and resistance random access memories (ReRAM).