Anisotropic Error Estimates of Virtual Element Methods
报 告 人: 陈龙 教授
所在单位: 美国加州大学欧文分校
报告地点: 数学楼202讨论室
报告时间: 2018-08-28 10:00:00
报告简介:

A refined a priori error analysis of the conforming and non-conforming Virtual Element Method (VEM) is developed for approximating a model Poisson problem. A set of new geometric assumptions is proposed on shape regularity of polygonal meshes. A new universal error equation for the VEM is derived for any choice of stabilization, and a new stabilization using broken half-seminorm is introduced to incorporate short edges naturally into the a priori error analysis on isotropic elements. The error analysis is then extended to a special class of anisotropic elements with high aspect ratio originating from a body-fitted mesh generator, which uses straight lines to cut a shape regular background mesh. Lastly, some commonly used tools for triangular elements are revisited for polygonal elements to give an in-depth view of these estimates' dependence on shapes.

上一篇 下一篇
主讲人简介:
陈龙,美国加州大学欧文分校教授,北京科学与工程研究院教授,北京市“海聚工程”入选专家。1997年在南京大学获得学士学位,2000年在北京大学获得硕士学位,2005年在Pennsylvania State University获得博士学位。主要研究兴趣有偏微分方程数值分析、自适应有限元理论、多重网格算法设计与分析和网格生成与优化。主持美国自然科学基金项目三项,发表科研论文50余篇,任SCI杂志编委。