Colloquium系列报告|Some numerical issues regarding deep neural network approximations for PDEs.
报 告 人: 周涛 研究员
所在单位: 中国科学院数学与系统科学研究院
报告地点: 腾讯会议
报告时间: 2022-06-14 10:00:00
报告简介:

报告地点:腾讯会议 817-705-068

点击链接入会,或添加至会议列表:https://meeting.tencent.com/dm/mxyY1zygiNBe

Deep neural networks have been widely used for solving PDEs in recently years. In this talk, we shall discuss some numerical issues for such approaches. In particular, we shall present some recent ideas for dealing with essential boundary conditions, nonlocal operators and effective sampling strategies on unbounded domains.

 

上一篇 下一篇
主讲人简介:
周涛,中国科学院数学与系统科学研究院研究员。曾于瑞士洛桑联邦理工大学从事博士后研究。主要研究方向为不确定性量化、随机最优控制以及时间并行算法等。在国际权威期刊如SIAM Review、SINUM、JCP等发表论文60余篇。2018年获自然科学基金委“优秀青年科学基金”资助。现担任SIAM J Sci Comput、Commun. Comput. Phys、J Sci Comput等国际期刊编委,国际不确定性量化期刊(International Journal for UQ)副主编。