腾讯会议ID:680 325 521
https://meeting.tencent.com/s/xDPeJTMAS74F
本报告介绍我们用于求解半线性椭圆方程、特征值问题、不等式约束优化问题等的多水平校正算法。本报告首先将从最简单的有限元理论中最基本的Aubin-Nitsche技巧的理解出发,介绍我们定义的一种新的低维子空间及在其上的Aubin-Nitsche估计,然后将这种技巧应用于构造非线性方程的迭代算法。我们将分析这个迭代算法的收敛速度和计算效率,并通过应用张量技术将多项式形式的非线性方程的求解效率提高到与非线性迭代次数无关的渐近最优程度。最后我们将介绍这种思想在特征值问题、带不等式约束的优化问题等中的应用以及最新的进展。